Estimation of Time Transformation Models with Bernstein Polynomials
نویسندگان
چکیده
Time transformation models assume that the survival time is linearly related to covariates through an unknown monotonic transformation function and an error term with known distribution. In this paper the sieve method of maximum likelihood is used to estimate the unknown monotonic transformation of survival time. More specifically a suitable class of Bernstein polynomials is used to estimate the transformation function, that preserve the monotonicity and smoothness. This estimation method is less parametrically intensive than current time transformation methods. Furthermore, our method produces a smooth estimate of the time transformation and hence the survival function. We discuss the selection of the number of parameters for the polynomial asymptotically, and for practical sample sizes. The asymptotic properties of the estimators are shown, including the asymptotic normality and efficiency of the regression ∗A. McLain ([email protected]) is a VIGRE Postdoctoral Fellow, Department of Statistics, North Carolina State University, Raleigh, NC. †S. Ghosh is Professor, Department of Statistics, North Carolina State University, Raleigh, NC. 1 coefficient. Simulation studies illustrate that our estimator has reasonably good empirical properties in practical sample sizes. The method is demonstrated on two data sets and compared to previous similar works.
منابع مشابه
A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials
In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...
متن کاملA solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials
In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملThe Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials
In this paper, we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays. Constant or pantograph delays may appear in state-control or both. We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then, these are utilized to reduce the solution of optimal control with constant...
متن کاملExpansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind
In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...
متن کامل